

Enzymatic Colorimetric Determination of Serum Glucose

REF . GLU-MC – 03100	(3 X 100 ml)
GLU-MC – 011000	(1000 ml)
GLU-MC – 0250	(2x50 ml)

INTENDED USE

NS Biotec glucose reagent is intended for the in vitro quantitative determination of glucose in serum, plasma, cerebrospinal fluid (CSF), or urine on both automated and manual systems.

CLINICAL SIGNIFICANCE

Glucose is the major carbohydrate present in the peripheral blood. Oxidation of glucose is the major source of cellular energy in the body. Glucose derived from dietary sources is converted to glycogen for storage in the liver or to fatty acids for storage in adipose tissue. The concentration of glucose in blood is controlled within narrow limits by many hormones, the most important of which are produced by the pancreas. The most frequent cause of hyperglycemia is diabetes mellitus resulting from a deficiency in insulin secretion or action. A number of secondary factors also contribute to elevated blood glucose levels. These include pancreatitis, thyroid dysfunction, renal failure, and liver disease. Hypoglycemia is less frequently observed. A variety of conditions may cause low blood glucose levels such as insulinoma, hypopituitarism, or insulin induced hypoglycemia. Glucose measurement in urine is used as a diabetes screening procedure and to aid in the evaluation of glucosuria, to detect renal tubular defects, and in the management of diabetes mellitus. Glucose measurement in cerebrospinal fluid is used for evaluation of meningitis, neoplastic involvement of meninges, and other neurological disorders.

ASSAY PRINCIPLE

A large number of methods exist for determination of glucose in body fluids. Numerous chemical methods depend on the reduction of heavy metals or nitroaromatic acids by the aldehyde group of glucose. All these methods suffer from one or more problems including lack of specificity, requirement for prolonged incubation, and the use of noxious chemicals. Enzymatic methods for glucose determination were first described in 1948 by Keilin and Hartee using glucose oxidase in a manometric technique. Keston⁵ modified this method in the early 1950's using glucose oxidase/peroxidase enzyme system and o-dianisidine chromogen systems. Since then, various alternative chromogen systems have been proposed. The Trinder method replaces carcinogenic o-dianisidine with phenol plus 4-aminoantipyrine⁶. This method is less influenced by interfering substances and does not suffer from the many drawbacks of earlier methods. NS Biotec glucose reagent use of glucose oxidase enzymes the combines with the measurement of glucose in human serum, urine, or CSF. The series of reactions involved in the for the The series of reactions involved in the assay system is as follows:

- 1. Glucose oxidized by glucose oxidase (GOD) to gluconic acid.
- 2. In presence of peroxidase (POD), the formed hydrogen peroxide formed affects the oxidative coupling of phenol and 4aminoantipyrine (4-AAP) to form a red-colored guinoneimine dye.

Glucose +O ₂ + H ₂ O	Gluconic acid+H ₂ O ₂
2 H ₂ O ₂ + 4-AAP + Phenol	Quinoneimine dye + 4 H₂O

The intensity of the color produced is directly proportional to alucose concentration. It is determined by measuring the increase in absorbance at 500 - 550 nm.

EXPECTED VALUES

Serum or plasma	
Adults (fasting)	70 – 110 mg/dl (3.9 – 6.1 mmol/l)
Full-term infants	30 – 90 mg/dl (1.7 – 5.0 mmol/l)
Urine	
Random	5.0 - 15 mg/dl (0.28 – 0.83 mmol/l)
24 hours	<0.5 g/day (2.8 mmol/day)
CSF	
Adults	40 - 75 mg/dl (2.2 – 4.2 mmol/l)

Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference range. For diagnostic purposes, the glucose results should always be assessed in conjunction with the patient's medical history, clinical examination, and other findings.

REAGENTS

R_1	Glucose standard	100	mg/dl
R ₂	Phosphate buffer, pH 7.0	0.1	mol/l
	Phenol	11.0	mmol/l
	Glucose oxidase	1.5	KU/l
	Peroxidase	2	KU/l
	4-Aminoantipyrine	0.4	mmol/l

• Reagent Preparation & Stability

All reagents are ready for use and stable up to the expiry date given on label when stored at 2-8°C.

SPECIMEN

Serum, plasma, urine, and cerebrospinal fluid.

* The only accepted anticoagulants are heparin, EDTA, and fluoride.

Specimen Preparation & Stability

• For serum specimen

Patients should be following their usual diet and be in their usual state of health. Patients should refrain from eating for 6 to 8 hours before fasting blood sample. Serum must be separated from the clot

promptly since the rate of glucose decrease is approximately 7% in one hour

in whole blood. This decrease is the result of glycolysis. Glucose in separated non-hemolyzed serum is generally stable up to 8 hours at 25°C or up to 72 hours at 4°C. Glycolysis can be inhibited by collecting the specimen in sodium fluoride tubes¹.

• For urine specimen

Collect urine in a dark bottle. For 24 hours collections add 5 ml glacial acetic acid to the container before collection for preservation. Unpreserved urine samples may lose up to 40% of their glucose after 24-hours storage at room temperature³. It is recommended to keep specimens on ice during collection.

• For CSF specimen

CSF may be contaminated with bacteria and often contains other cellular constituents. CSF samples should therefore be analyzed for glucose immediately3.

PROCEDURE

Manual Procedure

Wavelength	500 - 550 nm
Cuvette	1 cm light path
Temperature	20-25 or 37 °C
Zero adjustment	against reagent blank
Specimen	Serum, plasma, CSF
	or diluted urine

	Blank	Standard	Specimen
R ₂	1.0 ml	1.0 ml	1.0 ml
Standard		10 µl	
Specimen			10 µl

Mix, incubate for 10 minutes at 37°C or 15 minutes at 20-25°C. Measure the absorbance of specimen (Aspecimen) and standard (Astandard) against reagent blank.

The color is stable for 60 minutes.

Automated Procedure

User defined parameters for different auto analyzers are available upon request.

CALCULATION

Calculate the glucose concentration by using the following formulae:

Glucose Concentration=

Absorbance of Specimen X Standard value

Absorbance of Standard

For urine specimen the results must be multiplied by the dilution factor by the volume in liters.

• Unit conversion mg/dl x 0.055 = mmol/l

LINEARITY

When run as recommended, the assay is linear up to 500 mg/dl (27.5 mmol/l).

If result exceeds 500 mg/dl (27.5 mmol/l), specimen should be diluted with 0.9% NaCl solution and reassayed. Multiply the result by the dilution factor.

SENSITIVITY

The sensitivity is defined as the change of analytical response per unit change in analyte concentration at a path length of 1 cm.

When run as recommended the sensitivity of this assay is 5.0 mg/dl (0.28 mmol/l).

QUALITY CONTROL

It is recommended that controls (normal and abnormal) be included in:

- Each set of assays, or
- At least once a shift, or
- When a new bottle of reagent is used, or
- After preventive maintenance is performed or a clinical component is replaced.

Commercially available control material with established glucose values may be routinely used for quality control.

Failure to obtain the proper range of values in the assay of control material may indicate:

- Reagent deterioration,
- · Instrument malfunction, or
- Procedure errors.
- The following corrective actions are recommended in such situations:
 - Repeat the same controls.
 - If repeated control results are outside the limits, prepare fresh control serum and repeat the test.
 - If results on fresh control material still remain outside the limits, then repeat the test with fresh reagent.
 - If results are still out of control, contact NS Biotec Technical Services.

INTERFERING SUBSTANCES

- · Anticoagulants:
- Heparin, EDTA, and fluoride are only accepted anticoagulant. • Bilirubin:
- No interference from free or conjugated bilirubin up to a level of 15 mg/dl.
- Drugs:
- Young in 1990 has published a comprehensive list of drugs and substances, which may interfere with this assay.
- Haemoglobin:
 No interference
- No interference from haemoglobin up to a level of 200 mg/dl. Lipemia:

Grossly lipemic or iceteric sera will cause false glucose values and required the use of a serum blank.

WARNING & PRECAUTIONS

- NS Biotec glucose reagent is for in vitro diagnostic use only. Normal precautions exercised in handling laboratory reagents should be followed.
- Warm up working solution to the corresponding temperature before use.
- The reagent and sample volumes may be altered proportionally to accommodate different spectrophotometer requirements.
- Valid results depend on an accurately calibrated instrument, timing, and temperature control.
- The reagent blank will not exceed an absorbance of 0.1 but don't use the reagent if it is turbid or if the absorbance is greater than 0.2 at 500 nm.
- If specimen is grossly lipemic or iceteric use serum blank by adding 10 of patient serum to 1.0 ml distilled water and read absorbance against water blank. Subtract this absorbance from the test absorbance to correct for the lipemia or icterus.

BIBLIOGRAPHY

- Caraway, WT & Watts, MB (1987): Carbohydrates. In: Tietz NW, ed. Fundamentals of clinical Chemistry. 3rd ed. Philadelphia: WB Saunders; 422-447.
- Howanitz, PJ& Howanitz, JH.(1984): Carbohydrates. In: Henry JB, ed. Clinical Diagnosis and Management by laboratory Methods. 17th ed. Philadelphia: WB Saunders; 165-179.
- Sacks, DB (1994): Carbohydrates. In: Burtis CA, Ashwood ER, eds. Tietz Textbook of Clinical Chemistry. 2nd ed. Philadelphia: WB Saunders; 928-1001.
- 4. Keilin, D & Hartree, EF (1948): Biochem. J. 42:250.
- Keston, AS, (1956): Abstract of Papers, 129th Meeting, Am. Chem, Soc., Dallas, TX, April 1956.
- 6. Trinder, P (1969): Ann. Clin. Biochem. 6: 24.

	Consult Instruction for Use
	Caution Consult Accompanying Documents
IVD	In Vitro Diagnostic Medical Device
n n	Temperature Limitation
	Manufacturer
EC REP	Authorized Representative In The European Community
REF	Catalogue Number
LOT	Batch Code
8	Use By

